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ABSTRACT

-
t

When models of human vision adequately measure the relative quality of candidate half
onings of an image, the problem of halftoning the image becomes equivalent to the search

r
o
problem of finding a halftone that optimizes the quality metric. Because of the vast numbe
f possible halftones, and the complexity of image quality measures, this principled approach

t
t
has usually been put aside in favor of fast algorithms that seem to perform well. We find tha
he principled approach can lead to a range of useful halftoning algorithms, as we trade off

f
t
speed for quality by varying the complexity of the quality measure and the thoroughness o
he search.

High quality halftones can be obtained reasonably quickly, for example, by using as a
s

t
measure the vector length of the error image filtered by a contrast sensitivity function, and, a
he search procedure, the sequential adjustment of individual pixels to improve the quality

-
t
measure. If computational resources permit, simulated annealing can find nearly optimal solu
ions.

1. INTRODUCTION

The problem of halftoning a gray scale image is the problem of finding a binary image

d
which appears as similar as possible to the gray scale image. This problem can be broken
own into two parts: first, we must find a measure which captures the "similarity" of two

-
i
images; then, after we have done this, we must be able to find the binary image which max
mizes this "similarity."

In order to be useful, a measure of similarity between two images must incorporate our
r

a
knowledge of the human visual system. To illustrate the importance of this, we first conside

simple metric that does not do this, namely the familiar root-mean-square (RMS) error. At
tthis point, we introduce some notation: let represent the value of the gray-level image ag g

i
i

ithe th pixel (we use the single index to represent the two dimensions of spatial position to
simplify the following expressions). Similarly, let represent the quantized value of thehi

i 1h −1 ≤ g ≤ dcorresponding pixel in the output halftone image . We assume that , an
. We define to be the local error:hi i= ±1 e
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To obtain the RMS error, we divide this quantity by the number of pixels and take the square
oot. Because this is a monotonic transformation of , any halftone image which minim-

ξ
ξ h

.izes the RMS error must also minimize



be completely accurate for regions where the target image is not uniform, it is nevertheless a3

s
a
good starting point. The contrast sensitivity function (CSF) describes the visibility of signal
s a function of spatial frequency; for each spatial frequency and orientation, the sensitivity is

,
w
defined to be the reciprocal of the contrast of the weakest signal that can be seen. Obviously

e are not concerned with errors which cannot be seen; therefore it makes sense to consider,
instead of the raw error , the error filtered to weight frequencies according to their detecta-ei
bility. We now consider the space domain representation of the CSF. The CSF can be

-
i
represented in the space domain by a linear shift invariant filter; the detectability of the quant
zation error can be estimated from the degree to which it excites this filter. The CSF itself

e
t
only specifies the amplitude spectrum of the filter; to uniquely determine the filter we assum
hat it introduces no spatial phase shifts. We will use the symbols to refer to the value offi

t i wi , jhis filtered error at the th pixel. We also introduce to represent the filter weight with
which the error from the th pixel, , contributes to :j e fi

i
j

i , j j

j

Σf = w e .

w = w ii , j j , .
T
Our choice of a zero-phase filter together with shift invariance imply symmetry:

he shift invariance assumption is that

lwi , j k , l
→

i
→

j
→

k
→= w iff p − p = p − p ,

i→piwhere is a vector representing the position of the th pixel. Shift invariance is not
required for the following discussion, however.

At this point, we must make an assumption about how errors at different parts of the

m
image combine to determine the overall quality of the halftoned representation. For

athematical simplicity, we assume that the combined detectability of the filtered errors is
f

t
described by the squared Euclidean norm of the vector whose components are the values o
he filtered error: We seek the halftoned image which minimizes the total squared filtered

error. At this point we will redefine the symbol (which we introduced previously toξ
r

o
represent the squared norm of the vector of raw errors) to be the squared norm of the vecto
f filtered errors:

i
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n this paper, we consider methods that can be specified by three rules: 1) a rule for selecting

r
or generating an initial image; 2) a rule for the sequential selection of image pixels to be
evised; 3) a rule for the adjustment of the halftone values at the visited locations.

eAt this point we introduce a bit of additional notation. Let be the candidate halftonhn
ni n kmage after pixels have been examined. Let be the index of the th pixel visited. We

define to be with set to +1 and to be with set to -1. We use ourh h h h h hkn
+

n k n
−

n

0h k -
t
chosen rule to obtain ; we use our scanning rule to obtain a pixel index from the itera
ion count . In the following sections we consider various rules for obtaining givenn hn +1

n .h



2.1. Strict Descent

A simple method for reducing is to start from some initial quantized image, and
s

ξ
equentially consider individual pixels in the quantized image, changing them if the change

reduces the total error . We refer to this method as strict descent because the total errorξ
.decreases monotonically

Consider the effect of the state of , the quantized value at the th pixel, on the totalh kk
e ξrror . We begin by rewriting the expression for the filtered error to make explicit the
dependence on :hk
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By expanding the square twice, and collecting all terms which do not depend on the value of
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h ξ ξkTo find the value for which minimizes , we consider the values of for the images

n and , corresponding to the two possible states of . Let be the total error associ-+
n
−

k
+h h h ξ

h ξ h −a n
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nted with the halftone , and let be the total error associated with the halftone . Our
rule says that we will pick the image with the lower associated total error:
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h = h iff ξ − ξ <
he remainder of this section is devoted to the evaluation of this difference. Expressions for
+ and are obtained from equation (2) by substituting the appropriate value of . We−
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ξTnThe temperature parameter is positive, so the state having the smaller value of has the

e
higher probability. As the temperature becomes large, the two states are chosen with nearly
qual frequency. If we define to be the difference between the the two energies,

∆ξ = ξ − ξ ,

∆ξ
+ −

n
+h :the rule can be stated in terms of the probability that the succeeding state will be

n +1 n
+

n

n hhhhhhhhhhhhhh)exp(−∆ξ/T
)

A

Pr ( h = h ) =
1+exp(−∆ξ/T

s the temperature approaches zero, so does the probability that the poor state is chosen, and
the rule approaches the deterministic rule of section 2.1:

n +1 n
+h = h iff ∆ξ < 0.

This deterministic rule always improves the energy at every step but almost always stops at a
-local rather than a global optimum. Annealing schedules which slowly reduce as a funcTn

t nion of can have a good chance of finding the optimal halftone, but they can be very slow.

a
Good annealing schedules can be estimated from an examination of what happens to the

verage error when the algorithm is run at a fixed temperature, as shown in figure 3. The
.

F
figure shows the average error as a function of number iterations for 4 different temperatures

or a given temperature, the average error decreases until it reaches an asymptotic value
s

r
which corresponds to the "thermal" noise in the system. The higher temperature processe
each their asymptotic values more quickly, but these values are higher than those ultimately

o
a
reached by the lower temperature processes. Note that the curve in figure 3 corresponding t

temperature of 0.025 has not reached equilibrium after 100000 iterations over the entire
,

f
image. The data in figure 3 were generated by a process halftoning a uniform input of zeroes
or which the optimal halftone is known to be a perfectly regular checkerboard. The log of

n
t
the error for the checkerboard has a value of approximately -4, which is quite a bit lower tha
he best curve in figure 3.

3. RESULTS

We have defined a metric , which describes how close a halftone comes toξ ( g , h ) h
g d

s
perceptually simulating a continuous tone image . The new algorithms we have presente
eek to minimize this error metric. In this framework, one can evaluate the performance of

various algorithms by comparing the generated error values.

In order to apply our algorithms, the filter to be applied to the error must first be deter-

G
mined. In our simulations, we have approximated the contrast sensitivity function with a

aussian. The optimal standard deviation will depend on the final viewing distance, but, as
n

t
we have seen, the textures which are produced in uniform regions do not depend strongly o
he filter size for standard deviations above one pixel.

.
F

Once the error filter has been determined, two other free parameters must be determined
irst, an initial state of the image must be chosen. We have obtained good results by starting

l
with a random array of light and dark pixels; other choices we have investigated include
ocally quantizing the image with a fixed threshold (as in figure 1), or using an image

n
w
obtained from another halftoning algorithm, or using a constant image. Secondly, the order i

hich the points are visited must be specified. We have tried three different scanning patterns,



o
one in which the points are sampled randomly, and two deterministic scanning patterns. One
f these deterministic scans was a traditional left-to-right top-to-bottom raster; the other was a

d
"scattered" scan in which the two low order bits of the iteration counter determined the qua-
rant of the point, the next two bits selected the quadrant-within-the-quadrant, and so on

recursively.

Our investigations for the case of strict descent have produced the following observa-
f

m
tions: first, the use of a raster scan produces oscillation in the output with the consequence o

ore iterations being required to reach equilibrium. The scattered scan pattern produces rapid
r

t
convergence, but if the initial image is not random the scattered scan method produces regula
extures similar to those produced by ordered dither. These are eliminated if the initial

-
t
halftone is random. Random scanning seems to produce the best results of all, but more itera
ions are require to insure that all pixels have been visited. Images produced using all of

4

these methods are shown for comparison in figure 4.

. Existing methods

Among existing halftoning methods, there can be observed a tradeoff between speed and
.simplicity and the quality of the final image. Ordered dither is one of the simplest methods1

-
h
In this method, each pixel in the input image is compared against a position-dependent thres
old, with the result of the comparison determining the state of the corresponding output

-
h
pixel. The quality of the final image is greatly affected by the choice of the individual thres
olds; Bayer has demonstrated a construction for obtaining well-balanced micro patterns.

T

5

he biggest advantage of this method is its speed and simplicity. Since the operations carried

e
out at a given pixel are independent of the values of all other pixels, the algorithm is
minently suited to implementation on a parallel machine.

.At the other end of the spectrum is error diffusion, introduced by Floyd and Steinberg6

o
n
In error diffusion, as each pixel is quantized the quantization error is "diffused" or spread t
eighboring pixels which have yet to be quantized. When these pixels are eventually quan-

,
a
tized, their final output values are chosen so as to compensate for previous quantization errors
s well as the desired value at the point itself. This method produces high-quality halftones

,
h
and is particularly good at reproducing sharp edges. Because of its inherently serial nature
owever, a parallel implementation is impossible.

lKnuth has introduced a hybrid method he calls dot diffusion. In this method, smal7

groups of pixels are quantized independently (as in ordered dither), but within each group
d

a
quantization errors are shared between neighbors. This method obtains results nearly as goo
s those produced by error diffusion using an algorithm for which a parallel implementation

exists.

Of the methods described above, it is generally agreed that error diffusion produces the
f

t
best results. We might ask, however, is this in fact the best we can do? The serial nature o
he algorithm means that the errors get propagated in the direction the image is scanned,

-
r
which can result in subtle artifacts. From an aesthetic standpoint, we would prefer an algo
ithm in which the errors are diffused isotropically in all directions. It seems intuitively clear

s
that the pattern of errors will depend somehow on the weights with which the errors are
pread to nearby pixels, but there are no recipes telling how to choose the weights to obtain a

particular error spectrum.



These problems have been addressed by recent work applying the theory of neural4,8,9,10

t
f
networks to the problem of halftoning. The development presented above is similar to tha
ollowed by these earlier efforts. Our approach differs, however, in that we have eliminated

r
t
the intermediate image in the Hopfield network which is subjected to a nonlinearity in orde
o produce the final halftone image. In our method the pixels are processed sequentially,

.
W
whereas when the intermediate image is used it is updated in parallel, or "lock-step" fashion

e believe that this difference produces faster convergence for our method in the strict des-
cent case.

In figure 5, we present a comparison of the present method with the most popular com-
s

g
petitor, error diffusion. The particular implementation of the error diffusion used the weight
iven in Newman and Sproull’s text, and used a serpentine raster which processed alternate

5

scan lines in alternate directions.

11

. DISCUSSION

Unlike error diffusion, the present method produces halftones which possess uniform tex-

b
tural properties at all gray levels. This is not the case for the error diffusion algorithm, as can
e seen in figure 5, where the error diffusion image shows the formation of regular patterns at

i
gray levels producing dot densities of 25%, 50% and 75%. Regular patterns such as these can
nteract with nonlinearities in the output device (such as ink spread in a printer dot) to pro-

i
duce artifactual distortions in the tone scale. While output nonlinearities will also distort
mages processed using the algorithm described in this paper, the uniformity of the halftone

a
texture with changes in gray level will prevent the introduction of false contours by the
rtifacts, making the method robust with respect to failings of the output device.

o
a

In our development, we used the contrast sensitivity function to filter the error in order t
ssess the quality of a candidate halftone. A more refined version might use a more accurate

s
m
representation of the CSF, but when the image is to be viewed from a variety of distances thi

ay produce little improvement. One aspect of visual sensitivity which probably can be
y

f
exploited is the oblique effect, which describes the fact that humans have greater sensitivit
or signals oriented either vertically or horizontally than for oblique signals. 21

r
t

All approaches based on the CSF presuppose that the quantization errors will be nea
hreshold. For the case where the halftoning noise will be visible (as is commonly the case

e
e
when presenting halftone images on cathode-ray tube displays), minimum detectability of th
rror may not be the most appropriate criterion. Since the ultimate goal is communication of

e
p
the information in the original image, what is really desired is a halftoning noise which can b
erceptually disassociated from the underlying image; we would like to produce a halftone in

i
which the noise is seen as a transparent veil overlying an uncorrupted percept of the original
mage. While these ideas have not been fully developed, we believe that the present method,

e
by making explicit the relationship between the design of the error filter and the resulting
rror spectrum, will make it easy to design adaptive schemes which tailor the quantization

noise to the picture content.

Other investigators have recently considered similar approaches, but instead of flipping
f

a
the states of individual pixels they considered instead the effects of exchanging the values o
djacent pixels having different states, i.e. "moving" the white pixels around. We note that

t
every such exchange can in principle be generated by the sequential setting and clearing of
he individual pixels, although this scenario often involves an improbable intermediate state

having a high error value. Nonetheless, as long as a method has a nonzero probability of



reaching all possible states, it will approach the global optimum given enough time to do so.

e
Conversely, if only a fraction of the states can be reached, as in the case when only
xchanges are allowed, then it is extremely unlikely that the global optimum will be in the

space of images which will be considered. One group following this approach began by13

n
b
setting the total number of white pixels in accordance with the D.C. value of the image; it ca
e seen from the tone scale compression in figure 2, however, that the optimal image will not

o
have this property if it has unequal areas of values near white and black. Fixing the number
f white pixels in the image is equivalent to giving an infinite weight to the value of the CSF

y
g
at zero frequency. We note that by using a Gaussian error filter in our work, we have alread
iven a disproportionate weight to the low frequency terms, since the CSF is actually

bandpass in nature.

Lastly, we must mention one final point which is something of an embarrassment. In the

d
early stages of this work, we were primarily concerned with improving on the results pro-
uced by error diffusion, and paid little attention to ordered dither. When we later included

l
v
ordered dither in our comparisons, we were surprised to find that it produced lower numerica
alues of the filtered error than either error diffusion or the method presented here, in spite of

i
the fact that the images produced by ordered dither were the least visually pleasing. We
nterpret this fact to reflect the inadequacy of a simple circularly symmetric filter as a model

-
r
of the human visual system; in future work, we plan to develop a refined version of the algo
ithm which uses an array of oriented filters, which we think will be sensitive to the structured

l
artifacts in the ordered dither images, and will give the images rankings which are more in
ine with perceptual judgements.

6. CONCLUSIONS

In this work we have tried to demonstrate how one could design a halftoning algorithm
e

h
based on a computational model of the human visual system. The particular model which w
ave considered here is only a first stab at the problem, but it serves to illustrate some of the

o
e
principles which we hope to use to extend to more complex models. In particular, we hope t
xtend the method to exploit the visual system’s relatively poor resolution (both in space and

7

time) to chromatic variation.
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